Telegram Group & Telegram Channel
Что такое отчёт о классификации (classification report)? Как его интерпретировать?

По сути, отчёт о классификации — это сводка о производительности модели-классификатора, представляющая различные метрики. Вот эти метрики:

🔹Точность (Precision) — отношение истинно положительных предсказаний к общему числу предсказанных положительных.
Precision = TP/(TP+FP)
🔹Полнота (Recall) — отношение истинно положительных предсказаний к общему числу фактических положительных.
Recall = TP / (TP + FN)
🔹F1-мера — гармоническое среднее точности и полноты.
F1-мера = 2 * (Точность * Полнота) / (Точность + Полнота)

где,
TP = Истинно положительный
TN = Истинно отрицательный
FP = Ложноположительный
FN = Ложноотрицательный

Отчёт о классификации можно создать, например, с помощью библиотеки scikit-learn, используя функцию classification_report. В такой отчёт также включён показатель support, который указывает на количество фактических вхождений класса в наборе данных.

#машинное_обучение



tg-me.com/ds_interview_lib/260
Create:
Last Update:

Что такое отчёт о классификации (classification report)? Как его интерпретировать?

По сути, отчёт о классификации — это сводка о производительности модели-классификатора, представляющая различные метрики. Вот эти метрики:

🔹Точность (Precision) — отношение истинно положительных предсказаний к общему числу предсказанных положительных.
Precision = TP/(TP+FP)
🔹Полнота (Recall) — отношение истинно положительных предсказаний к общему числу фактических положительных.
Recall = TP / (TP + FN)
🔹F1-мера — гармоническое среднее точности и полноты.
F1-мера = 2 * (Точность * Полнота) / (Точность + Полнота)

где,
TP = Истинно положительный
TN = Истинно отрицательный
FP = Ложноположительный
FN = Ложноотрицательный

Отчёт о классификации можно создать, например, с помощью библиотеки scikit-learn, используя функцию classification_report. В такой отчёт также включён показатель support, который указывает на количество фактических вхождений класса в наборе данных.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/260

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram Auto-Delete Messages in Any Chat

Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.

Библиотека собеса по Data Science | вопросы с собеседований from cn


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA